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Abstract. Tomographic methods offer great potential for
retrieving three-dimensional spatial distributions of cloud
liquid water from radiometric observations by passive mi-
crowave sensors. Fixed tomographic systems require multi-
ple radiometers, while mobile systems can use just a single
radiometer. Part 1 (this paper) examines the results from a
limited cloud tomography trial with a single-radiometer air-
borne system carried out as part of the 2003 AMSR-E valida-
tion campaign over Wakasa Bay of the Sea of Japan. During
this trial, the Polarimetric Scanning Radiometer (PSR) and
Microwave Imaging Radiometer (MIR) aboard the NASA P-
3 research aircraft provided a useful dataset for testing the
cloud tomography method over a system of low-level clouds.
We do tomographic retrievals with a constrained inversion
algorithm using three configurations: PSR, MIR, and com-
bined PSR and MIR data. The liquid water paths from the
PSR retrieval are consistent with those from the MIR re-
trieval. The retrieved cloud field based on the combined data
appears to be physically plausible and consistent with the
cloud image obtained by a cloud radar. We find that some
vertically-uniform clouds appear at high altitudes in the re-
trieved field where the radar shows clear sky. This is likely
due to the sub-optimal data collection strategy. This sets the
stage for Part 2 of this study that aims to define optimal data
collection strategies using observation system simulation ex-
periments.
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1 Introduction

The study of climate and climate change has long been hin-
dered by a poor understanding of the effect of clouds (Ra-
manathan et al., 1989). The most important characteristic of
clouds after their simple presence or absence is their liquid
water content (LWC). Cloud microwave tomography, first
proposed by Warner et al. (1985), permits the retrieval of
LWC spatial distributions from microwave radiometric ob-
servations. This method retrieves the spatial structure of
LWC by observing the cloud’s thermal emission from multi-
ple directions at distinct locations. A certain degree of inter-
section between microwave beams is necessary for the cloud
tomography method to be successful.

One configuration proposed by Warner et al. (1985) is
shown schematically in Fig. 1. An aircraft carries a sin-
gle upward-looking radiometer, which switches automati-
cally between two fixed-direction antennas, and flies along
a horizontal line just under a cloud. A theoretical study of
this configuration (Drake and Warner, 1988) showed that it
performs similarly to a ground-based configuration that uses
two distinctly-located scanning microwave radiometers. A
field test was carried out in Louisiana and the retrieved LWC
agreed statistically with that measured in situ (Warner and
Drake, 1988).

There were many limitations that inhibited the practical
use of cloud tomography in the 1980s. Chief among them
were the high cost and huge size of radiometers, and their
slow scanning rate. Microwave technologies have advanced
considerably and microwave radiometers have become more
portable and reliable while costs have fallen, owing to the
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Figure 1: An airborne cloud tomography configuration proposed by Warner et al. (1985). The 
aircraft carries a single upward-looking radiometer, which switches automatically between two 
fixed-direction antennas, and flies along a horizontal line just under a cloud. 

Fig. 1. An airborne cloud tomography configuration proposed
by Warner et al. (1985). The aircraft carries a single upward-
looking radiometer, which switches automatically between two
fixed-direction antennas, and flies along a horizontal line just un-
der a cloud.

commercialization of microwave remote sensing. For ex-
ample, Padmanabhan et al. (2009) showed that monolithic
microwave integrated circuit technology and unique packag-
ing yields a compact, inexpensive and low-power instrument
that can be deployed as a network to tomographically re-
trieve three-dimensional fields of water vapor. The reduction
in radiometer size with increasing reliability finally makes
airborne scanning microwave radiometers reachable for the
community. At the same time, we can bring many more com-
putational resources to bear upon the mathematical problem
of cloud tomography than in Warner’s day, e.g., faster com-
puters, better cloud models (used in data assimilation mode),
and more advanced mathematical tools. Now is the time to
take advantage of the hardware and computational advances
to turn cloud tomography into a ubiquitous tool for cloud
physics.

Huang et al. (2008a, b) started the theoretical re-
examination of the cloud tomography method after its two-
decade dormancy. The first paper rigorously examined the
underlying mathematical problem using observation system
simulation experiments based on large eddy simulation. It
was revealed that, like other limited angle tomography prob-
lems, the mathematical problem of cloud tomography with
limited number of ground radiometers (2–4) is highly ill-
posed. Its solution is non-unique and very sensitive to obser-
vational noise and numerical errors. The second paper then
focused on the development of tomographic retrieval algo-
rithms that make use of various types of constraints based on
a priori knowledge to improve the retrieval. It was demon-
strated that appropriate constraints can improve the accuracy
of the tomographic retrieval by one order of magnitude.

The ground-based cloud tomography configuration has the
advantage of collecting data without human intervention and
thus is suitable for long-term cloud observation. The air-
borne configuration is more flexible, allowing cloud-chasing,

but has poor temporal coverage and is usually costly to de-
ploy. However, the airborne configuration with dual anten-
nas (Fig. 1) also has limitations, e.g., very limited observ-
ing angles and technical difficulties in building such dual-
antenna radiometers. The new generation of scanning ra-
diometers developed by the NOAA-CU Center for Environ-
mental Technology (CET) at University of Colorado at Boul-
der, called Polarimetric Scanning Radiometer (PSR), pro-
vides a good opportunity to re-evaluate the capability of the
airborne cloud tomography method with state-of-the-art mi-
crowave techniques. The PSR was deployed on the NASA
P-3 research aircraft along with several other microwave re-
mote sensing instruments during the 2003 Advanced Mi-
crowave Scanning Radiometer for EOS (AMSR-E) valida-
tion campaign over Wakasa Bay of the Sea of Japan.

In Part 1 (this paper) we examine the results from the lim-
ited cloud tomography trial during the 2003 AMSR-E cam-
paign in which the PSR scanned through a system of low-
level cloud layers. In Part 2, we then conduct observation
system simulation experiments about the mobile cloud to-
mography system and present several recommendations on
how to improve the mobile system.

The paper is organized as follows. Section 2 provides a
detailed description of the data collected during the Wakasa
Bay experiment. Section 3 sets up the theoretical basis for
the tomographic inversion problem. Section 4 elaborates the
retrieval procedures. Section 5 presents the retrieval results
and also focuses on validation of the tomographic retrievals.
Section 6 summarizes the findings of this paper.

2 Data

The data used in this study were collected during the 2003
AMSR-E campaign at Wakasa Bay from the instrumented
NASA P-3 research aircraft. The instruments included the
PSR scanning microwave radiometer with multiple measure-
ment frequencies from 10.7 to 89 GHz, a high frequency Mi-
crowave Imaging Radiometer (MIR) covering the spectral
range from 89 to 340 GHz, and an Airborne Cloud Radar
(ACR) operating at 95 GHz (see detailed specifications in Ta-
ble 1).

2.1 Description of the Wakasa Bay field campaign

The 2003 Wakasa Bay field campaign was a cooperative
effort between the Japan Aerospace Exploration Agency
(JAXA), and NASA AMSR-E teams focusing on the physical
validation of shallow snowfall and rainfall retrievals from the
AMSR and AMSR-E (Lobl et al., 2007). Wakasa Bay, on the
eastern end of the Sea of Japan, has fairly predictable cold air
outbreaks during winter in which cold air from the Eurasian
continent blows over the relatively warm Sea of Japan. These
storms typically produce very shallow rainfall layers near the
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Table 1. Instrument specifications and operation modes during the
Wakasa Bay cloud tomography experiment.

Instrument Frequency Beamwidth Scan mode

PSR 10.7, 18.7, 21.5, 37, and 2.3◦ at 37 GHz Along-track
89 GHz, 9.6–11.5 µ scan

MIR 89, 150, 183±1, 3, 7, 3.5◦ at 89GHz Cross-track
220, and 340 GHz scan

ACR 95 GHz 0.56◦ Nadir staring

surface, where warm boundary layer air mixes with the cold
air aloft.

The validation campaign was intended to improve under-
standing of winter precipitation over mid-latitude oceans.
During the three-week experiment from 14 January to 3
February 2003, the team collected a wealth of now pub-
licly available data of low- and mid-altitude winter clouds
and precipitation. The data relevant to this study are ground
and airborne radar reflectivities, microwave brightness tem-
peratures, and dropsonde data. To test the validity of the
airborne cloud tomography method, we selected a 176-km
long flight line (Fig. 2) obtained on January 28, 2003 start-
ing from (37.525◦ N, 133.522◦ E) to (38.8◦ N, 134.792◦ E),
within which the PSR had appropriate observational geome-
try for the purpose of cloud tomography retrieval (see more
details in Sect. 2.2).

2.2 PSR data

The PSR developed by CET is a versatile microwave ra-
diometer for imaging the polarimetric microwave emission
of the Earth’s oceans, land, ice, clouds, and precipitation.
The PSR provides vertical and horizontal polarization ob-
servations from C-band to W-band frequencies (Piepmeier
and Gasiewski, 1996). The basic concept of the PSR is a set
of polarimetric radiometers housed within a gimbal-mounted
scanhead drum. The scanhead drum is rotatable by the gim-
bal positioner so that the radiometers can view any angle
within ±70◦ elevation off nadir at any azimuthal angle (a
total of 1.32 sr solid angle), as well as external hot and ambi-
ent calibration targets. The PSR configuration was operated
in various scanning modes including conical, cross-track,
along-track, fixed-angle stare, and spotlight modes during
the Wakasa Bay field campaign. Figure 3 shows the swaths
of three successive PSR along-track scans; each covers an
isosceles-trapezoid-shaped region whose base angle is 20◦

and the distance between two successive scan cycles is ap-
proximately 5.9 km. Note that the swath of each scan cycle
is shown in different color. The lower parts of two succes-
sive scans have significant overlap with each other, while the
upper parts have almost no overlap. Furthermore, each scan
cycle has a little overlap with its second successive scan and
no overlap with its third successive scan (even at low alti-

tudes). As it will be shown later in this paper, the poor over-
lap between the scan cycles substantially limits the capability
of the mobile cloud tomography technique to retrieve small-
scale cloud structure.

The brightness temperature data are obtained using a data
processing and calibration algorithm developed by CET. The
first step is decoding the navigation information such as ge-
ographic coordinates, altitude, yaw, roll, and pitch of the
platform from the recorded navigation data. Then the ra-
diometric data are partitioned into individual “maneuvers”
based on the navigation information – a maneuver is a seg-
ment of flight during which the aircraft keeps the same alti-
tude and orientation and the radiometer remains in the same
scanning mode. The calibration algorithm described in Cor-
bella et al. (2002) is used to calculate the radiometer offset
and gain factors. The calibration method consists of periodi-
cally switching each of the receivers to view its correspond-
ing noise diode and infrequently viewing two external refer-
ence targets that have up to a 100-◦C temperature difference.
The gain and offset at closely spaced time intervals are com-
puted using the noise diodes, and by referring the diodes’
noise temperatures to precise measurements of the external
targets.

The original PSR data were recorded with 7.5-millisecond
integration time, resulting in about 8000 scan angles per one-
minute scan. The 7.5-millisecond integration time corre-
sponds to a 0.03◦ angular increment between two successive
beams. Given the 2.3◦ antenna beam width, the actual beam
volumes of any two successive beams are 99% overlapped
and thus the redundancy in the original data is very high. We
thus average the original data to 150-millisecond resolution
not only to reduce the total volume of the data but also to
average down the random integration noise in the data.

Horizontally-polarized microwave emission from the sea
surface has a maximum in the zenith direction and de-
creases with incidence angle (bell-shaped), while vertically-
polarized emission increases with incidence angle (bowl-
shaped). On the other hand, microwave emission from cloud
liquid water shows no or very weak polarization signal.
Thus, averaging the measured brightness temperatures over
the two polarizations will suppress the range of angular vari-
ation due to the background sea surface emission (thus reduc-
ing the uncertainty associated with the sea surface emission
model) and will enhance the signal-to-noise ratio of the to-
mographic data. Figure 4a shows the brightness temperatures
at 37 GHz averaged over the two polarizations as a function
of distance (or, equivalently, UTC time). The brightness tem-
peratures range from 160 K to 220 K. Figure 4b shows that
the corresponding view angles range from 70◦ (70◦ from
nadir in the forward direction) to−70◦ (70◦ from nadir in
the backward direction). Periodic observation gaps are no-
ticeable in the data. These gaps correspond to the portion
of the PSR scan cycles in which no atmosphere observations
were made when the scanhead was viewing or preparing to
view the external blackbody calibration targets.
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Figure 2: Flight tracks of the NASA P-3 aircraft on 28 January 2003 over the Sea of 
Japan. White –PSR operated on the along-track mode (the only mode suitable for cloud 
tomography retrieval); Red – the aircraft flew in a straight and level line; Green –the 
aircraft flew in a constant angle turns. 

Fig. 2. Flight tracks of the NASA P-3 aircraft on 28 January 2003 over the Sea of Japan. White – PSR operated on the along-track mode (the
only mode suitable for cloud tomography retrieval); Red – the aircraft flew in a straight and level line; Green – the aircraft flew in a constant
angle turns.
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Figure 3: Schematic of the geometry of the PSR along-track scans. The cartoon shows 
three successive along-track scan cycles, each shown in a different color. Each PSR swath 
spans ±70° off the nadir. The aircraft translates approximately 5.9 km during a full PSR 
scan cycle. It can be seen from the cartoon that a scan cycle moderately overlaps with its 
successive scan, but hardly overlaps with its second successive scan.  

 

Fig. 3. Schematic of the geometry of the PSR along-track scans.
The cartoon shows three successive along-track scan cycles, each
shown in a different color. Each PSR swath spans±70◦ off the
nadir. The aircraft translates approximately 5.9 km during a full
PSR scan cycle. It can be seen from the cartoon that a scan cycle
moderately overlaps with its successive scan, but hardly overlaps
with its second successive scan.

2.3 MIR data

The MIR is a nine-channel airborne imaging radiometer de-
signed to fly aboard high altitude aircraft for atmospheric re-
search (Racette et al., 1996). Three dual pass band channels
are centered on the strongly opaque 183 GHz water absorp-
tion line and a fourth channel is located at 150 GHz. These
channels have varying degrees of opacity from which the wa-
ter vapor profile can be inferred. There are two additional
channels located at 89 GHz and 220 GHz. The radiometer
has a 3.5◦ beamwidth for most of its channels. During the
Wakasa Bay field campaign, the imager was programmed to
operate in the cross-track scan mode with a 106◦ swath. In
each three-second scan cycles, it views two external calibra-
tion targets in addition to the 106◦ scene scan; one of these
targets is heated to a temperature of 330 K and the other re-
mains at the ambient temperature of the aircraft cruising al-
titude.

The MIR data from the Wakasa Bay field campaign
were calibrated by the Microwave Sensors Branch of
NASA/Goddard Space Flight Center and were made avail-
able at National Snow and Ice Data Center (NSIDC) (Wang
et al., 2004). We extract the cross-track nadir-looking beams
from the MIR data archive. The reason for choosing only
the nadir beams is that these beams are located in the ver-
tical plane of the PSR along-track scans and thus can serve
as a useful supplement to the along-track PSR data that con-
tain many observation gaps (each 1–3 km long, as shown in
Fig. 4a). To minimize the complexity caused by scattering
of ice particles, we use the lowest frequency of MIR, i.e.,
89 GHz.

The minimum brightness temperature observed by MIR at
89 GHz (Fig. 4c) is 195 K, possibly corresponding to a clear
sky condition; the maximum value observed is 250 K, indi-
cating the presence of a moderately thick cloud. The MIR
brightness temperatures at 89 GHz, on average, are about
30 K higher than those of the PSR at 37 GHz. This is due
to two factors: the higher emission efficiency of cloud liquid
water at 89 GHz than at 37 GHz, and the higher sea surface
microwave emission at 89 GHz than at 37 GHz (the optical
depth of a cumulus or stratocumulus cloud at microwave fre-
quencies is typically less than 0.2).

2.4 ACR data

The ACR is a scanning Doppler cloud radar capable of
providing co- and cross-polarization radar reflectivities at
95 GHz with a 0.56◦ beamwidth (Sadowy et al., 1997). It was
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Figure 4:  Examples of radiometric data obtained from the PSR and MIR deployed on the 
NASA P-3 research aircraft during the Wakasa Bay AMSR-E validation campaign. (a) 
The PSR brightness temperature as a function of distance; (b) the corresponding viewing 
angle; (c) the MIR nadir-viewing brightness temperature. The PSR scanned within ± 70° 
off the nadir along the flight line, providing multi-angular observations of microwave 
emission in the vertical plane of the flight track. The MIR was programmed to scan 
within a 106° swath across the flight track and only the nadir-viewing observations are 
used in this study.  
 

Fig. 4. Examples of radiometric data obtained from the PSR
and MIR deployed on the NASA P-3 research aircraft during the
Wakasa Bay AMSR-E validation campaign.(a) The PSR brightness
temperature as a function of distance;(b) the corresponding viewing
angle;(c) the MIR nadir-viewing brightness temperature. The PSR
scanned within±70◦ off the nadir along the flight line, providing
multi-angular observations of microwave emission in the vertical
plane of the flight track. The MIR was programmed to scan within
a 106◦ swath across the flight track and only the nadir-viewing ob-
servations are used in this study.

designed as a prototype airborne facility for the development
of the Cloud Profiling Radar System (CPRS), which is the
central instrument for NASA CloudSat mission. The ACR
can operate in both a fixed (downward and upward looking,
nadir parallel) and scanning mode (vertical scanning, various
degree intervals off nadir).

During the Wakasa Bay field campaign, the ACR was
operated in the fixed downward looking mode. The ACR
provides independent observations of two-dimensional cloud
structure along the flight track. Thus the ACR data can be
used to evaluate the tomographic retrievals from the pas-
sive observations of microwave radiometers. The ACR data
used in this study were processed by the Department of At-
mospheric Sciences of Colorado State University and were
made available at NSIDC. Figure 5 shows a 2-D snapshot
of radar reflectivity factors obtained within the flight line
shown in Figure 2. The radar reflectivity factors range from
−40 dBZ (clear sky return) to 40 dBZ (sea surface return).
The maximum reflectivity of the clouds is 15 dBZ, suggest-
ing that a significant number of large particles such as rain
and ice were present in the clouds. No bright band (melting
layer which appears to be brighter to the radar than neighbor-
ing layers) is found in the image. This is consistent with the
dropsonde measurements that the air temperature at low alti-
tudes is close to the freezing point (more details are provided
in Sect. 2.5).
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Figure 5: Image of co-polarization radar reflectivity factor obtained by the ACR. The 
high values (>30 dBZ) near the surface correspond to the sea surface returns. Below the 
sea surface, no radar return is allowed. However, multiple scattering of microwave 
between clouds and the sea surface makes some of the radar returns appear to be from 
below the sea surface. 

Fig. 5. Image of co-polarization radar reflectivity factor obtained by
the ACR. The high values (>30 dBZ) near the surface correspond to
the sea surface returns. Below the sea surface, no radar return is al-
lowed. However, multiple scattering of microwave between clouds
and the sea surface makes some of the radar returns appear to be
from below the sea surface.

2.5 Dropsonde data

Various types of radiosondes have been widely used to make
direct in-situ measurements of air temperature, humidity and
pressure with height, typically to altitudes of approximately
30 km. During the cloud tomography experiment, there was
a dropsonde launch every 10–15 min from the NASA P-3 air-
craft. Three of them were within the 176-km long flight line
shown in Fig. 2. We average the data from these three drop-
sondes to obtain the mean profiles of atmospheric tempera-
ture and humidity. Figure 6 shows the mean profiles of air
temperature and water vapor mixing ratio. The air tempera-
ture is close to 0◦C near the surface and decreases to−25◦C
at the altitude of 4.1 km (no dropsonde data available above
this level). The relative humidity is 63% at the surface level,
increases steadily to its maximum value of 92% at the alti-
tude of 1.5 km, and falls gradually to less than 10% at 4 km.
The lifting condensation level and adiabatic cloud water con-
tent then can be easily calculated from the mean atmospheric
profiles.

3 Theoretical basis for the inversion problem

The radiation intensity recorded by microwave radiometers,
usually expressed as brightness temperature, is related to the
spatial distribution of cloud liquid water and other atmo-
spheric variables through a one-dimensional (1-D) radiative
transfer equation. Since cloud droplets appear to be very
close to blackbody in the microwave region, the scattering
term can be omitted in the radiative transfer equation. Given
a total number ofm microwave rays, the 1-D radiative trans-
fer equation can be discretized by dividing the retrieval do-
main inton = N3 (N2 for a 2-D slice) equal-sized pixels to
yield the following matrix equation:

Ax = b, (1)

wherexT
= (α1,α2,···,αn) is the vector of atmospheric ab-

sorption coefficients (includes contributions from cloud wa-
ter, water vapor, and oxygen);bT

= (b1,b2,···,bm), is the
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Figure 6: The mean profiles of air temperature and relative humidity obtained from three 
dropsondes launched during the flight.  

Fig. 6. The mean profiles of air temperature and relative humidity
obtained from three dropsondes launched during the flight.

vector of adjusted microwave brightness temperatures; and
A = (aij ), also called a kernel matrix, is anm×n matrix that
approximates the radiative transfer operator discretely. The
kernel matrixA relates the observed brightness temperatures
to the atmospheric absorption coefficients.

The tomographic retrieval problem now becomes the in-
version of the matrix Eq. (1) to obtain the vector of absorp-
tion coefficients and then the absorption coefficients can be
easily converted into cloud LWC (Warner et al., 1985; Huang
et al., 2008a). While a direct application of the conventional
least squares method to an ill-posed problem like cloud to-
mography would result in large errors in the solution, regu-
larization techniques are usually needed to reduce the sen-
sitivity of the solution to observational noise and numerical
errors (Twomey, 1977). In our previous studies (Huang et al.,
2008b), we adapted the Tikhonov regularization technique to
make use of a variety of constraints. The inclusion of con-
straints greatly reduces the retrieval sensitivity to noise and
numerical errors and thus obtains a better retrieval for the ill-
posed tomographic retrieval problem. The idea is to seek the
appropriate vectorx for the following constrained minimiza-
tion problem:

min
x

{
‖Ax −b‖

2
2+λ‖Lx‖

2
2

}
, (2)

where the termλ‖Lx‖
2
2 is the regularization term,‖•‖2

stands for the HilbertL2 norm, L is the regularization ma-
trix and usually takes the form of a discrete approximation
of the spatial derivative operator, andλ is the regularization
parameter determining the weight of the smoothness to be
imposed on the retrieval. It is known that regularization tech-
niques in the form of anL2 norm, e.g., the Tikhonov regu-
larization, tend to bias toward a smooth solution (Strong and
Chan, 2003). This is confirmed by one of our previous stud-
ies (Huang et al., 2008b) that show the Tikhonov method of-
ten fails to capture large discontinuities in the cloud LWC
field, e.g., the retrieval cannot reproduce the sharp edges at
cloud top and instead the retrieved cloud top boundaries are
often blurred and extended to higher altitudes.

In order to improve the retrieval of discontinuous struc-
tures, non-linear regularization techniques in the form ofL1
norm such as total variation (TV) regularization have been
proposed in image restoration applications (Acar and Vogel,
1994; Chambolle and Lions, 1997):

min
x

{
‖Ax −b‖

2
2+λ‖Lx‖1

}
,. (3)

For the TV regularization, the regularization term
can be written as ‖Lx‖1 = TV(x) ≡

∑
i

|∇xi |1r ≡∑
i

∣∣( ∂
∂h

+
∂
∂v

)
xi

∣∣1r, where r denotes the spatial coor-

dinate,1r stands for the area or volume of an individual
pixel and can usually be neglected in the practical computa-
tion, h andv respectively denote the horizontal and vertical
directions. A more detailed discussion on the choice of the
regularization term will be presented in the Part 2 of this
paper. The main advantage of theL1 norm total variation
regularization is that it does not penalize more for a larger
discontinuity in the solution, while simultaneously it does
not bias toward smoothness in the solution; thus under
certain conditions it can preserve the exact discontinuous
structures in the solution (Acar and Vogel, 1994; Strong
and Chan, 2003). However, the implementation of suchL1
norm regularization techniques is more difficult than theL2
norm techniques because of the non-linearity of theL1 norm
regularization term.

In this research, several other constraints beside the
smoothness constraint are also used in the retrieval algo-
rithm. First, to better capture the adiabatic or sub-adiabatic
increase of cloud liquid water with height, we make a small
modification to the regularization term shown in Eq. (3).
The new regularization term is now written as:‖Lx‖1 =∑
i

|∇xi |1r ≡
∑
i

∣∣∣( ∂
∂h

+
∂

z∂v

)
xi

∣∣∣1r, wherez stands for the

central height of the volume1r. This constraint will usu-
ally drive the vertical distribution of retrieved cloud LWC
toward an adiabatic shape as long as the solution still satis-
fies the data constraint. Second, a non-negative constraint
is included to meet the apparent physical requirement that
all retrievals must be non-negative. The non-negative con-
straint was also used in our previous cloud tomography re-
trieval algorithms. Last, a support constraint is imposed on
the retrieval; the support constraint forces the retrieval to van-
ish outside a pre-determined support region S. The use of
the support constraint is necessary since some knowledge of
cloud boundaries is usually available from a radar image or
can be obtained from radiosonde-based atmospheric temper-
ature and humidity profiles. More details on the implemen-
tation of these constraints are provided later in this section.

A major difficulty of all the regularization techniques is
to determine the weight of the regularization term, in other
words, to determine how much information in the retrievals
should come from the regularization. Usually the weight-
ing parameterλ is determined either in an ad hoc manner
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based on a priori knowledge or in an iterative manner by
performing the inversion many times with different regular-
ization parameters and choosing the appropriate regulariza-
tion parameter based on the L-curve or the cross-validation
method. This iterative method for choosing the regulariza-
tion parameter is computationally expensive and sometimes
is difficult to apply in operational algorithms. In practical
applications, there is usually an estimate of the instrument-
related observational error and the forward modeling error,
and this information can be used to determine the appropri-
ate regularization parameter. To do this, here we reformulate
the regularization problem in a slightly different way with the
formulations of Eqs. (2) and (3). For the TV regularization,
the new formulation is:

min
x

{‖Lx‖1}, subject to‖Ax−b‖
2
2≤ε

and other constraints. (4)

Here ε is the error tolerance of the observations. Hansen
(1998) pointed out that for any choice ofε in Eq. (4) there
always exists a regularization parameterλ with which the
formulation (2) will yield the same solution as (4).

The constrained inversion problem (Eqs. 1–4) can be
solved by a direct inversion method, i.e., the method involv-
ing the calculation of the inverse of the kernel matrix. The
direct method is fast and works well when the dimensional-
ity of the problem is not large. The computational time in-
creases withO(n2); thus for very high-dimensionality prob-
lems the direct method will be very slow and sometimes even
impossible because the size of the kernel matrix will become
unmanageable. In contrast, for an iterative method like the
algebraic reconstruction algorithm (Gordon et al., 1979), a
widely used technique in many tomographic applications, the
computational cost increases only linearly with the dimen-
sionality of the problem (O(n)). Therefore, it has a great
advantage over the direct method for large dimensional prob-
lems. In this study, we choose the iterative method because of
the large number of radiometric observations (about 10 000
beams with a 0.15-s averaging).

Figure 7 shows the pseudo-code that implements the algo-
rithm (4) and it is a modification of the algorithm proposed
by Sidky et al. (2008). The aim is to minimize the total vari-
ation of the retrieval subject to the data constraint (or the ob-
servational constraint), the non-negativity constraint, and the
support constraint. The minimization of the total variation
term is achieved by a steepest descent method with an adap-
tive step-sizedTV . The other constraints are enforced by the
use of projection onto convex sets (POCS) (Youla and Webb,
1982; Sezan and Stark, 1982, 1983). The POCS projection
operator for the data constraint, which forces the predicted
observationsAx to fall within a specified toleranceε of the
observed datab, is chosen to be the simultaneous algebraic
reconstruction technique (SART) with a decreasing step size
ddata (Anderson and Kak, 1982). The non-negativity con-
straint satisfies the apparent physical requirement that cloud
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• 1. x0=x  

• 2. SART // simultaneous algebraic reconstruction technique (SART), 

enforce data constraint 

• 3. ∆b=|Ax-b|, ∆xdata=|x-x0|  //the change due to data constraint 

• 4. if (x(r)<0) x(r)=0   //enforce non-negativity constraint 

• 5. if (r∉S) x(r)=0  //enforce support constraint 

• 6. x0=x  

• 7. Total variation steepest descent with step size dTV 

• 8. ∆xTV=|x-x0|  //the change due to total variation steepest descent steps 

• 9. ddata=α*ddata 

• 10. if (∆b<ε and ∆xTV>∆xdata) dTV=β*dTV  

• 11. if (stop criteria) return; else go to step 1.  

 
 

Figure 7. The pseudo-code of the constrained retrieval algorithm. The constraints 
implemented in the retrieval algorithm include smoothness, non-negativity, and support 
constraints. x and b represent the atmospheric absorption coefficients and the observed 
brightness temperatures. ddata and dTV are the step sizes for the data constraint and for the 
total variation steepest descent, respectively. α and β are the dampening factors,  0 < β <α 
< 1.

Fig. 7. The pseudo-code of the constrained retrieval algorithm. The
constraints implemented in the retrieval algorithm include smooth-
ness, non-negativity, and support constraints.x and b represent
the atmospheric absorption coefficients and the observed brightness
temperatures.ddataanddTV are the step sizes for the data constraint
and for the total variation steepest descent, respectively.α andβ are
the dampening factors, 0<β<α<1.

water content must be non-negative and the corresponding
POCS projection operator takes the simple form shown in
line 4 (Fig. 7). The support constraint allows the retrieval to
be non-zero only in the support region S and its correspond-
ing POCS projection operator is described in line 5 (Fig. 7).

The step-size adaptation of the TV steepest descent is per-
formed at line 10 as follows: at each iteration the changes
of the retrieval due to the data constraint and due to the TV
constraint are computed, respectively; the step-size of the TV
constraint is adjusted to make sure that the change of the re-
trieval due to the TV constraint is smaller than that due to
the data constraint. This means the retrieval must first sat-
isfy the data constraint (within the observational error toler-
ance) when moving toward the direction preferred by other
types of constraints. At each iteration, the step size for the
data constraintddatais dampened by a factorα that is slightly
smaller than unity. When the change of the retrieval due to
the TV steepest descent is larger than that due to the data
constraint, the gradient-descent step-sizedTV is reduced by
a factorβ that is slightly less than the dampening factorα

for the data constraint. Once the retrieval satisfies the data-
tolerance condition as the iteration proceeds,dTV will be no
longer reduced, allowing it to become larger thanddata, be-
causeddatais always decreasing. As a result, the retrieval will
drift toward lower-TV directions. When the data constraint is
violated again, the steepest-descent step-size reduction will
continue.
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4 Retrieval procedures

Section 3 not only describes the theoretical formulation of
the cloud tomography retrieval problem but also establishes
the basis for the constrained retrieval algorithm. In order
to use the aforementioned constrained algorithm to solve
Eq. (4) to obtain the vector of absorption coefficients, the ker-
nel matrixA and the observation vectorb have to be specified
using available observations or model simulations.

First, the microwave emission from the underlying sea
surface is needed. The vectorb in Eq. (1) represents the
“adjusted” microwave observations, that is, the contribution
from the background must be substracted from the original
microwave observations. The microwave signal received by
the airborne radiometers is composed of the thermal emis-
sion from the atmosphere along the observation path plus
the path-attenuated emission from the underlying sea sur-
face. Therefore, the background emission, i.e., sea surface
emission here, has to be specified either through direct mea-
surements (not available in the Wakasa Bay field campaign)
or through model simulations. It is well known that sea sur-
face microwave emission depends not only on the thermo-
dynamic temperature of the sea surface but also on the in-
cidence angle. This dependency can be further complicated
by waves and foam caused by surface wind. According to
the dropsonde record, the wind speed was about 15 m/s at
the altitude of 175 m and increased to 25 m/s at 2300 m. In
this study, a two-scale sea surface thermal emission model
(Johnson, 2006) is used to estimate the directional variation
of sea surface brightness temperatures at different spectral
frequencies.

Second, some slant beams can pass through both the re-
trieval domain and its two adjacent regions. In order to tomo-
graphically retrieve the spatial distribution of cloud LWC in
the retrieval domain, the knowledge of cloud LWC distribu-
tion in its adjacent regions is needed. The vectorb in Eq. (1)
should be further adjusted using to a radiative transfer equa-
tion so that the contribution from adjacent regions is sub-
tracted. Given the aircraft cruising altitude of 6.7 km and the
maximum off-nadir scanning angle of 70◦, a simple geomet-
rical calculation shows that the cloud liquid water distribu-
tions in two 15-km long regions, one northeast and the other
southwest of the retrieval domain, are needed to calculate the
vectorb. It is clearly unfortunate that there were no other
direct measurements of the cloud LWC during the experi-
ment that can be used to specify the cloud fields in the two
adjacent regions. So we use the ACR radar reflectivity fac-
tors at 95 GHz, combined with a simple sub-adiabatic cloud
model, to estimate the spatial distribution of cloud LWC in
the two adjacent regions. It is known that converting radar
reflectivity factors to cloud LWC using empirical Z-LWC re-
lationships (formulas that convert radar reflectivity into cloud
LWC) would be unreliable when the radar data are contam-
inated by large particles like ice and precipitation (Frisch et
al., 1995). Also it is difficult to determine the cloud base

from radar reflectivity alone if the cloud is drizzling or pre-
cipitating. Therefore we use the radar data only to determine
the cloud top boundary and set the cloud base to be the lift-
ing condensation level that can be calculated using the at-
mospheric profiles derived from nearby dropsonde descents.
We then use a subadiabatic profile to approximate the vertical
distribution of cloud LWC. A subadiabatic profile is charac-
terized by the adiabaticity, defined as the ratio of actual sub-
adiabatic LWP to the adiabatic LWP. As will be discussed
later in detail, the adiabaticity is a tunable parameter in the
retrieval algorithm and it is determined by minimizing the
mean difference between the observed and predicted bright-
ness temperatures.

With the background and side boundary emission speci-
fied, the last step is to invert the calibrated radiometric data
to obtain the vectorx of absorption coefficients (see Eq. 1)
using the constrained least squares algorithm described in
Sect. 3. The constraint terms in formulation (4) have to be
specified. First, we estimate the overall uncertainty in the
measured microwave brightness temperature plus the mod-
eled sea-surface brightness temperature is around 2.0 K. The
error toleranceε is thus set to be 2.0m, wherem is the
number of observations. Second, the cloud top height is
around 3.0 km from the radar image (Fig. 5) and this is fur-
ther confirmed by a temperature inversion observed at 3.1 km
(Fig. 6). Conservatively, we thus set the support constraint to
be within 3.5 km, that is, cloud water content will be zero
above 3.5 km.

With the constraints being specified, the vectorx of ab-
sorption coefficient can be obtained by the inversion algo-
rithm described in Fig. 7. The cloud absorption coefficient is
proportional to cloud LWC and also depends upon the ther-
modynamic temperature and the mass of water vapor and
oxygen (Warner, et al., 1985); thus the vertical profiles of
air temperature, pressure, and water vapor mixing ratio are
needed in order to extract the distribution of cloud LWC from
the vectorx of absorption coefficient. In this study, these
necessary profiles are readily obtained from several dropson-
des launched during the flight (Fig. 6). The absorption effi-
ciencies of liquid water, water vapor and oxygen are calcu-
lated using the absorption model of Rosenkranz (1998).

5 Results and discussions

Our previous studies showed that, for a fixed ground-based
cloud tomography configuration, the number of radiome-
ters and their physical arrangement determine how well the
cloud tomography retrieval can resolve fine spatial structures
(Huang et al., 2008a). For the airborne tomography system
with a single scanning radiometer, the spacing between suc-
cessive radiometer scan cycles determines the intersection
between microwave beams and thus should have a similar
impact on the tomographic retrieval. In order to examine
this impact, we perform three retrieval experiments: the first
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Figure 8: Retrieved cloud liquid water fields using the MIR data, the PSR data, and the 
combination of MIR and PSR data. 

 
Fig. 8. Retrieved cloud liquid water fields using the MIR data, the
PSR data, and the combination of MIR and PSR data.

experiment uses only the nadir-viewing MIR cross-track data
(no intersection between beams); the second experiment uses
only the PSR along-track data; and the third includes both the
MIR nadir data and the PSR data. We then evaluate the to-
mographic retrievals by examining the consistency between
the retrievals and the cloud radar image and by comparing
the resultant liquid water path (LWP) from the three retrieval
experiments.

5.1 Retrieval using only the MIR nadir data

Figure 8a shows the cloud LWC field from the first retrieval
experiment (which uses only the MIR nadir data). The mean
LWC is 0.069 gm−3 and the mean LWP is 462 gm−2. The
retrieved cloud LWC field appears to be vertically uniform
at most locations, revealing almost no information about the
vertical structure of clouds. This is not a surprising result
because the nadir MIR beams fail to meet the critical re-
quirement of cloud tomography that the beams of different
scanning cycles must intersect with each other to some ex-
tent. Theoretically, these nadir-viewing observations contain
only the path-integrated cloud information, i.e., LWP. The
horizontal structure of the MIR LWP is sometimes correlated
with vertically integrated radar reflectivity (Fig. 5). The MIR
retrieval has little cloud water in the regions 45–55 km, 60–
70 km, and 140–150 km, while the radar shows very strong
returns (5–20 dBZ) in these regions which indicates the pres-
ence of large particles such as ice. In particular, the scattering
of ice in these regions depresses the observed brightness tem-
peratures at 89 GHz and thus depresses the MIR-retrieved
LWC (Wang et al., 2005).

The presence of ice in regions of depressed brightness
temperature is further confirmed by examining the radar lin-
ear depolarization ratio (LDR), defined as the ratio of the
power received in the orthogonal, or cross-polarized, chan-
nel to that received in the transmitted, or copolarized, chan-
nel (Fig. 9). The dominant component of backscattered sig-
nal from liquid cloud drops has the same polarization as
the transmitted signal, and only large non-spherical parti-
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Figure 9: Image of linear depolarization ratio (LDR) obtained by the ACR. The most 
probable value of LDR inside the clouds is -19.2 dB, while bands of higher LDR are also 
found around locations at 30, 58, 68, and 143 km. These high LDR bands are indicative 
of non-spherical ice particles which can change the polarization of scattered microwave 
emission. Nevertheless, quantitative retrieval of ice from the LDR data is difficult in this 
case because the LDR signal is very weak (only 1-1.5 dB). 

Fig. 9. Image of linear depolarization ratio (LDR) obtained by
the ACR. The most probable value of LDR inside the clouds is
−19.2 dB, while bands of higher LDR are also found around lo-
cations at 30, 58, 68, and 143 km. These high LDR bands are in-
dicative of non-spherical ice particles which can change the polar-
ization of scattered microwave emission. Nevertheless, quantitative
retrieval of ice from the LDR data is difficult in this case because
the LDR signal is very weak (only 1–1.5 dB).

cles, such as ice, can appreciably change the polarization of
the transmitted signal. Thus the high LDR bands in Fig. 9
around 30, 58, 68, and 143 km are indicative of ice presence.
The locations of these bands are consistent with the bands
of brightness temperature depression observed by the MIR.
Quantitative retrieval of ice using the depolarization signal is
beyond the scope of this paper.

5.2 Retrieval using only the PSR data

The retrieval from the second experiment (which uses only
the PSR along-track data) shows not only the horizontal vari-
ation of clouds but also some vertical structure (Fig. 8b).
The maximum LWC in the retrieval is about 0.5 gm−3 and
is found between 2.0 and 2.8 km altitude. A fully adiabatic
cloud would have a LWC of about 1–1.4 gm−3 at these alti-
tudes. Thus the maximum LWC in the retrieved cloud field
is 30–40% of the adiabatic value. This fraction is consis-
tent with many of the in-situ and remote sensing observations
of marine low-level clouds (Albrecht et al., 1990; Miller et
al., 1998). The spatial characteristics of the retrieved clouds
around 30, 110, 140 and 160 km are consistent with those
in the radar image (Fig. 5). Some retrieval artifacts are also
noticeable. For example, the tomographic retrieval shows
large LWC values at 75 km distance and about 3.5 km alti-
tude while radar image shows no significant return at this
location. We suspect that such artifacts at relatively high al-
titudes are related to poor beam overlap resulted from the ge-
ometric limitation of the airborne tomographic configuration
illustrated in Fig. 3.

The PSR retrieval reasonably locates some of the regions
with low LWC where the radar reflectivity factors are below
−35 dBZ. The cloud top height compares reasonably well
with that in the radar image, which seems to be a result of the
cloud support constraint described in Sect. 3 that forces the
retrieval algorithm to produce little or no clouds at altitudes
higher than 3.5 km. The MIR retrieval incorrectly labels the
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regions around 52 and 152 km as clear sky, while the PSR
substantially improves the retrieval in these regions, mainly
due to less microwave scattering by ice at 37 GHz than at
89 GHz. In the region between 58 km and 68 km the radar
shows very strong backscattering signal while the PSR re-
trieval indicates only very thin clouds or clear sky. We sus-
pect, again, that this is due to the strong scattering by ice
particles which makes the region appear colder and thus re-
duces the retrieved cloud LWC.

5.3 Retrieval using combined MIR and PSR data

For the third retrieval experiment with both the MIR and PSR
data (Figure 8c), several improvements are noticeable, al-
though, at first glance, the retrieved spatial distribution of
cloud LWC looks similar to that from the second experi-
ment (which uses only the PSR). Around 35 and 105 km,
the retrieval from the third experiment shows more consis-
tent cloud structures compared to the radar image than the
retrieval from the second experiment. The regions with low
cloud LWC are better resolved. The reason for these im-
provements is as follows: the MIR scans through the nadir
every three seconds, while the PSR provides a nadir view ev-
ery 44 s when it is operated in along-track scan mode. Thus
the addition of the MIR data improves the horizontal cloud
structure in the retrieved cloud field.

It should be pointed out that the tomographic data obtained
during the Wakasa Bay experiment do not contain enough in-
formation to determine cloud structure at high altitudes. We
find that, when no cloud support constraint is used, some
vertically-uniform puffy clouds appear at high altitudes in the
retrieved cloud LWC field, while the radar image shows only
clear sky at the same altitudes. These high-altitude clouds
are physically implausible because, if present at such high
altitudes, they would be dominated by ice particles that are
almost invisible to centimeter wavelength radiometers. The
vertically-uniform clouds appearing at high altitudes in the
retrieval are likely to be caused by the insufficient overlap be-
tween the swaths of successive PSR scan cycles. As shown
in Fig. 3, due to the high speed of the NASA P-3 aircraft
there is almost no overlap between the swaths of two suc-
cessive scans at altitudes higher than 4 km; thus the resultant
radiometric data contain almost no information on the spatial
distribution of cloud water there.

5.4 Liquid water paths calculated from the retrievals

The retrieved LWC fields in the three experiments are inte-
grated vertically to obtain the LWP at each location along the
flight track. Figure 10a shows the point-by-point comparison
between the MIR LWP and the PSR LWP. The correlation
coefficient is 0.96, suggesting consistency between the MIR
and the PSR retrieved horizontal structures. The mean MIR
LWP averaged along the flight track also agrees well with
that of the PSR. The slope of the regression line is signifi-
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Figure 10: Comparison of the liquid water paths based on the MIR and PSR data: (a) 
scatter plot with the robust regression line (solid) and the line of equal LWPs (dash); (b) 
LWPs as a function of distance. 

Fig. 10.Comparison of the liquid water paths based on the MIR and
PSR data:(a) scatter plot with the robust regression line (solid) and
the line of equal LWPs (dash);(b) LWPs as a function of distance.

cantly smaller than 1.0 and the intercept is about 100 gm−2.
According to Fig. 10a and b, the MIR LWP values are sig-
nificantly higher than those of the PSR for regions that have
thick clouds (LWP>500 gm−2), while, for regions with rel-
atively thin clouds (LWP<150 gm−2), the MIR LWP values
are consistently lower than those of the PSR. Thus, the dis-
tribution of PSR LWP appears to be much narrower than that
of the MIR LWP. There may be several reasons for this.

First, the finest scale that the cloud tomography method
can resolve depends on the total number of beams and on the
extent to which these beams intersect (Huang et al., 2008a).
Beam intersection is determined both by the radiometer scan-
ning speed and the aircraft speed. Each scan cycle of PSR
takes 44 s and during this period the aircraft moves about
6 km, resulting in moderate overlap between two successive
scans but very little overlap between a scan and its second
previous scan (Fig. 3). So we expect relatively poor horizon-
tal and vertical resolution for the PSR retrieval. On the other
hand, the MIR scanned a 106◦ swath across the flight track
every three seconds, producing a nadir observation every 400
m along the track. Thus, the MIR retrieval has an along-track
(horizontal) resolution of about 400 m.

The second reason for the narrower distribution of the PSR
LWP is that the regularization techniques in the retrieval al-
gorithm, especially the use of a smoothness constraint to re-
duce the high retrieval sensitivity to noise, may artificially
smooth the horizontal structure in the PSR retrieval. This
smoothness constraint eliminates extreme values.
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Figure 11: The mean differences between the calculated and observed brightness 
temperatures as a function of the adiabaticity of the two regions adjacent to the retrieval 
domain: (a) for all beams; (b) for beams that pass through either of the two adjacent 
regions. 

 

 

Fig. 11. The mean differences between the calculated and observed brightness temperatures as a function of the adiabaticity of the two
regions adjacent to the retrieval domain:(a) for all beams;(b) for beams that pass through either of the two adjacent regions.

5.5 Mean difference between measured and calculated
brightness temperatures

Now, in a kind of closure experiment, let us compare the
measured brightness temperatures with those calculated from
the retrieved cloud LWC fields using a radiative transfer
model (see Sect. 2 in Part 2 of this paper); this gives a mea-
sure not only of how well the retrieval reproduces the given
microwave brightness temperature data but also of how ac-
curate the guess of liquid water distribution in the two adja-
cent regions is. As shown in Sect. 4, these adjacent regions
are north-east and south-west of the retrieval domain and are
15 km wide and 6.7 km high. Here, a subadiabatic profile is
used to approximate the vertical distribution of cloud LWC
in these two regions. We then vary the adiabaticity from 0 to
1 and select, as the best guess, the value that gives minimum
difference between the measured and calculated brightness
temperatures.

Figure 11a shows the 3-D plot of the mean difference be-
tween the calculated and PSR-observed brightness tempera-
tures as a function of the adiabaticity of the aforementioned
two adjacent regions. The minimum difference between the
two sets of brightness temperatures is 1.9 K; this is compara-
ble with the sum of instrumental noise and uncertainty in the
forward modeling of the sea surface brightness temperatures.
This minimum is found at an adiabaticity of 0.5 in the north-
eastern region and 0.25 in the southwestern region. When
moving away from the minimum point, the mean difference
of brightness temperatures increases smoothly from 1.9 K to
4.1 K. Figure 11b is similar to Fig. 11a but calculated us-
ing only the microwave beams that pass through either of the
two adjacent regions. The minimum difference between the
calculated brightness temperatures (for the beams that pass
through either of the two regions) and the observed values is
3.3 K and is found at almost the same adiabaticity values as
Fig. 11a, i.e., an adiabaticity of 0.5 in the northeastern region
and 0.25 in the southwestern region. This agreement sug-
gests that the guess of cloud LWC fields for the two adjacent
regions are consistent with the observed brightness tempera-
tures.

6 Conclusions

This paper examined the results from a limited cloud tomog-
raphy experiment conducted over Wakasa Bay, Sea of Japan,
as part of the 2003 AMSR-E validation campaign. During
the tomographic experiment, several multi-wavelength mi-
crowave radiometers were deployed on the NASA P-3 air-
craft and scanned through a system of winter clouds. The air-
craft also carried a nadir-pointing W-band cloud radar. The
radiometer scanning strategy provides suitable geometry for
tomographic retrieval of 2-D cross sections of cloud LWC.
To handle the highly ill-posed tomographic retrieval prob-
lem, we adapted a constrained inversion algorithm that uses
several different types of constraints to obtain more phys-
ically plausible retrievals. The constraints used in this re-
search include smoothness, non-negativity, and support (the
support constraint forces the retrieval to vanish outside a cer-
tain domain).

We performed three retrieval experiments using the con-
strained inversion algorithm: one with only the MIR nadir
data, one with only the PSR along-track scanning data, and
one with the combined PSR and MIR data. The retrieval
based on the MIR nadir data, as one would expect, provides
only vertically-integrated cloud liquid water and thus no in-
formation on the vertical structures. The PSR retrieval shows
physically plausible cloud structures; it not only reasonably
captures the locations of clouds but also reasonably repro-
duces some features of the cloud vertical profiles. Combin-
ing the PSR and MIR data further improves the retrieval at
regions with low cloud liquid water. When the support con-
straint is not included, some implausible results are identified
in the retrieval, e.g., vertically-uniform puffy clouds appear
at high altitudes where the radar shows no significant return
(clear sky), indicating insufficient information in the radio-
metric data to retrieve cloud structure at such high altitudes.

There were no in-situ measurements of cloud LWC dur-
ing the field campaign to validate the tomographic retrievals.
Therefore, we fell back on three less satisfactory ways of
testing our retrievals. First, we compared the retrievals with
the radar reflectivity image to qualitatively evaluate how
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well the tomographic method captures the spatial patterns of
clouds. The spatial distribution patterns of cloud LWC ap-
pear to be consistent with the patterns of radar reflectivity
except for regions where we strongly suspect the presence
of ice. Second, we calculated the LWP from the retrievals
of each experiment and compared the resultant LWPs at each
location. The correlation between the PSR LWP and the MIR
LWP is 0.96 for the flight leg. The mean PSR LWP along the
flight track agrees closely with the MIR LWP, while the his-
togram of the PSR LWP is much narrower than that of the
MIR LWP. Third, we calculated the microwave brightness
temperatures corresponding to the retrieved cloud LWC val-
ues, consistent with the way the radiometers observe. The
mean difference between the calculated brightness tempera-
tures and the observed values is 1.9 K, which is close to the
uncertainty associated with the instrumental noise and the
modeling of the background sea surface emission. Overall,
the consistency between the different types of observations
shows the self-consistency and potential of the cloud tomog-
raphy technique.

The Wakasa Bay field campaign was designed to provide
data for validating the precipitation retrieval algorithms de-
veloped for the AMSR-E sensor. As a result, many condi-
tions were not ideal for the cloud tomography technique. The
NASA P-3 aircraft flew at 144 m/s, resulting in insufficient
overlap between successive scan cycles at high altitudes,
which leads to ambiguity in the retrievals at these high alti-
tudes. The surface wind was strong during the cloud tomog-
raphy test, causing at least a 2–3 K modeling error of back-
ground (sea surface) brightness temperatures. This model-
ing error will inevitably propagate into the tomographic re-
trievals. Nevertheless, this research has demonstrated the
potential of tomographically retrieving cloud structure us-
ing current scanning microwave radiometer technology and
has identified several limitations of the airborne cloud to-
mography experiment during the Wakasa Bay field cam-
paign. More rigorous sensitivity studies are required to pro-
vide guidelines to improve future field-based studies of cloud
tomography. This can be achieved by using a suite of com-
plicated field tests that are expensive to implement, or by us-
ing observation system simulation experiments that are much
easier and cheaper to implement. The latter is the focus of
Part 2 of this paper.
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